Thin magnesium layer confirmed as an antibacterial and biocompatible implant coating in a co-culture model
نویسندگان
چکیده
Implant-associated infections commonly result from biofilm‑forming bacteria and present severe complications in total joint arthroplasty. Therefore, there is a requirement for the development of biocompatible implant surfaces that prevent bacterial biofilm formation. The present study coated titanium samples with a thin, rapidly corroding layer of magnesium, which were subsequently investigated with respect to their antibacterial and cytotoxic surface properties using a Staphylococcus epidermidis (S. epidermidis) and human osteoblast (hOB) co‑culture model. Primary hOBs and S. epidermidis were co‑cultured on cylindrical titanium samples (Ti6Al4V) coated with pure magnesium via magnetron sputtering (5 µm thickness) for 7 days. Uncoated titanium test samples served as controls. Vital hOBs were identified by trypan blue staining at days 2 and 7. Planktonic S. epidermidis were quantified by counting the number of colony forming units (CFU). The quantification of biofilm‑bound S. epidermidis on the surfaces of test samples was performed by ultrasonic treatment and CFU counting at days 2 and 7. The number of planktonic and biofilm‑bound S. epidermidis on the magnesium‑coated samples decreased by four orders of magnitude when compared with the titanium control following 7 days of co‑culture. The number of vital hOBs on the magnesium‑coated samples was observed to increase (40,000 cells/ml) when compared with the controls (20,000 cells/ml). The results of the present study indicate that rapidly corroding magnesium‑coated titanium may be a viable coating material that possesses antibacterial and biocompatible properties. A co‑culture test is more rigorous than a monoculture study, as it accounts for confounding effects and assesses additional interactions that are more representative of in vivo situations. These results provide a foundation for the future testing of this type of surface in animals.
منابع مشابه
Evaluation of Madurahydroxylactone as a Slow Release Antibacterial Implant Coating
Madurahydroxylactone (MHL), a secondary metabolite with antibacterial activity was evaluated for its suitability to generate controlled drug release coatings on medical implant materials. A smooth and firmly attached layer could be produced from a precursor solution on various metallic implant materials. In physiological salt solutions these coatings dissolved within a time period up to one wee...
متن کاملبررسی اثر ضخامت پوشش هیدروکسی آپاتیت بر توزیع تنش در اطراف سطح تماس ایمپلنت دندانی- استخوان با روش المان محدود
Background and Aims: Hydroxyapatite coating has allocated a special place in dentistry due to its biocompatibility and bioactivity. The purpose of this study was to evaluate the relation between the hydroxyapatite thickness and stress distribution by using finite element method. Materials and Methods: In this paper, the effect of hydroxyapatite coating thickness on dental implants was studi...
متن کاملImplants modified with polymeric nanofibers coating containing the antibiotic vancomycin
Objective(S): Implant-related infections are disastrous complications in the clinic. One recent strategy to reduce the rate of infection is using the bioactive coating with an antibiotic. The purpose of these bioactive surfaces is to prevent bacterial adhesion to the implant and, consequently, the development of biofilm. In this study, vancomycin-loaded polymeric coating on imp...
متن کاملPreparation of Poly(ether-6-block amide)/PVC Thin Film Composite Membrane for CO2 Separation: Effect of Top Layer Thickness and Operating Parameters
In this work, novel thin film composite membranes (TFCs) of poly (ether-6-block amide) (Pebax-1657) on a polyvinyl chloride (PVC) ultrafiltration membrane as support were prepared using inclined coating method for CO2 separation. Investigating the effects of top selective layer thickness formed by controlling the coating angle (15-60°) and polymer solution concentration (5-10 wt.%), ...
متن کاملFunctionalization of Titanium with Chitosan via Silanation: Evaluation of Biological and Mechanical Performances
Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we ...
متن کامل